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ABSTRACT

A wide-band network model is derived for interacting resonant irises in rectangular waveguides by means of

field and network theoretical considerations.

The model is applied to the analysis of the propagation charac-

teristics in a waveguide periodically loaded with such irises.

Introduction

Recently the corrugated waveguide has found wide
use in radar and communication systems. Nevertheless,
a potentially important configuration such as the rec-
tangular waveguide periodically loaded with resonant
irises has not been satisfactorily investigated.

In this paper, we present an approach, which makes
joint use of field and network thecretical methods.
A periodically loaded waveguide is modelled by means
of a cascade of identical multiport reactances con-
nected by a finite number of uncoupled transmission
lines. Each transmission line represents an "acces-
sible mode" of the discontinuity, i.e., a mode that
"sees" the adjacent discontinuities in the cascade.
This includes all propagating modes plus the first few
evanescent ones.

The reactance matrix of the multiport network
representing the discontinuity is obtained by means
of a method described in the literature [1].

This yields a wide-band multiport equivalent net-
work with frequency~independent elements so that the
field problem is translated entirely into a network
problem and repetition of the field analysis at each
frequency point is no longer necessary. Numerically,
the method has variational properties, and manipula-
tions with small matrices only are involved. The unit
cell of the periodic structure can now be modelled by
means of a given lumped network between two sets of
uncoupled transmission lines. Upon application of
Floquet's theorem, the propagation constants and the
field patterns of the modes of the periodic structure
can be derived.

Apart from the application to the periodic wave-
guide, the information provided on the resonant iris
is useful in the design of filters and impedance
matching networks.

Field Formulation

The geometry of a single resonant iris is illus-
trated in Fig. 1. For simplicity we will treat the
case of an infinitely thin and symmetric iris. The
case of finite thickness can be treated by methods
similar to those of [1] and [2]. For TElO excitation,
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The Rayleigh-Ritz variational expression for the
reactance of the iris is [1]
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where 1 < 1i,j < K,K being the number of accessible

modes, which we number according to increasing cutoff.
Qi is the N-dimensional row vector representing the
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ith accessible mode in terms of an appropriate ortho~-
normal basis on the aperture; B is the N x N truncation
of the infinite matrix representing the waveguide
Green's function in the same basis on the aperture.
From the solutions of the capacitive and inductive
cases, it appears that a convenient choice of basis is

provided by the "Schwinger functions [3]." These lead
to the finite expansion
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In the above representation, the matrix B takes the
form
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Frequency Dependence

In order to obtain a wide-band equivalent network,
we will now extract the frequency dependence of the
reactance matrix.

Ao

provides an expedient frequency variable for this prob-
lem. The characteristic admittance, normalized to that
of the fundamental mode, is
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For n > 0 and m > 1, the above distributed admittance
can be very closely approximated by means of the lumped
admittance
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the constants K,,K, are close to unity and tend to
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unity as m,n - <. In fact, they are determined as
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for 8 in the band of interest.

The case m = 1,n = 0 is treated similarly.
Introducing (12) in (5), the inversion of B can be
carried out formally and we obtain the reactance matrix
X in its Foster canonical form [1]
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N being the order of the variational solution.

The Corrugated Waveguide

The unit cell of the periodic structure and its
network model are depicted in Fig. 2. The transfer
matrix of the unit cell is given by
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Imposing Floquet's theorem yields
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where V and I are k~ order column vectors representing

the transverse electric and magnetic fields, respectively,
Making use of the reciprocity

at AA and CC (see Fig. 2).
of the structure, (24) can be simplified into

TV = cosh 82 V . (22)

The matrix T is real, but not symmetric and therefore
its eigenvalues are complex in general, in accordance
with the well-known properties of periodic structures.
As an example, the propagation characteristics of the
first two eigenvalues of a corrugated waveguide with
iris geometry

c/fa=0.,8; d/b =0.6 ; 2/a=1/8
was computed using N = 7, K = 1,2,3,5,6, and 7 in the

band 1 < 8 < 1.6, which corresponds to the standard
waveguide band. The results are displayed in Table 1.

The limiting cases of the capacitively and in-
ductively loaded waveguides can be recovered from the
general solution by setting c¢/a = 1 and d/b = 1.

Conclusions

From a Rayleigh-Ritz stationary formulation we
have determined a lumped equivalent network model for
the resonant iris in a rectangular waveguide.

The features of the method are as follows:
(1) The elements of the equivalent circuit are fre-
quency independent, (2) This network model has been
used to determine the propagation properties of the
periodic structure consisting of cascaded irises,
(3) The propagation constant of the periodic structure
is obtained as the solution of a matrix eigenvalue
problem, and (4) The method is general, in that irises
of arbitrary shape can be considered.
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Fig. 1. Geometry of the iris and equivalent network.
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Fig. 2. Periodic structure plus unit cell plus equivalent network.
TABLE 1
NORMALIZED PROPAGATION CONSTANT OF RECTANGULAR CORRUGATED WAVEGUIDE (5 = fa)
B
— 1 —
1.0 1.1 1.2 1.3 | 1.4 1.5 1.6 K
51 32.687 33.220 © j3.718 j4.192 j4.650 35.098 j5.536
: 1
)
51 j2.899 33.393 j3.861 j4.313 j4.754 35.185 j5.611
2
52 13.251 13.132 13.002 12.860 12.705 12.536 12.354
51 j2.382 j2.934 j3.426 33.887 j4.329 34.757 35.176
3
52 13.323 13.191 13.056 12.911 12.754 12.586 12.403
61 32.147 j2.694 33.185 33.645 34.087 j4.516 j4.936
5
62 12.830 12.767 12.716 12.661 12.597 12.523 12.437
51 32.294 32.825 33.294 j3.747 j4.176 34.599 j5.014
6
62 15.358 14.995 14.835 14.660 14.486 14.307 14.120
51 32.395 32.903 j3.368 j3.808 34.234 j4.651 I 35.060 ;
- ‘ | 7
62 15.188 14.732 14.525 14.356 14.191 14.020 \ 13.840

361




