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ABSTRACT

A wide-band network model is derived for interacting resonant irises in rectangular waveguides by means of
field and network theoretical considerations. The model is applied to the analysis of the propagation charac-
teristic in a waveguide periodically loaded with such irises.

Introduction

Recently the corrugated waveguide has found wide

use in radar and communication systems. Nevertheless,

a potentially important configuration such as the rec–
tangular waveguide periodically loaded with resonant
irises hae not been satisfactorily investigated.

In this paper, we present an approach, which makes

joint use of field and network theoretical methods.
A periodically loaded waveguide is modelled by means

of a cascade of identical multiport reactance con-
nected by a finite number of uncoupled transmission

lines. Each transmission line represents an “acces-

sible mode” of the discontinuity, i.e., a mode that

“sees” the adjacent discontinuities in the cascade.

This includes all propagating modes plus the first few

evanescent ones.

The reactance matrix of the multiport network

representing the discontinuity is obtained by means

of a method described in the literature [1].

This yields a wide-band multiport equivalent net-

work with frequency-independent elements so that the

field problem is translated entirely into a network
problem and repetition of the field analysis at each

frequency point is no longer necessary. Numerically,
the method has variational properties, and manipula-

tions with small matrices only are involved. The unit

cell of the periodic structure can now be modelled by

means of a given lumped network between two sets of
uncoupled transmission lines. Upon application of
Floquet’s theorem, the propagation constants and the
field patterns of the modes of the periodic structure

can be derived.

Apart from the application to the periodic wave-

guide, the information provided on the resonant iris

is useful in the design of filters and impedance

matching networks.

Field Formulation

The geometry of a single resonant iris is illus-

trated in Fig. 1. For simplicity we will treat the

case of an infinitely thin and symmetric iris. The

case of finite thickness can be treated by methods
similar to those of [1] and [2]. ‘or ‘Elo

excitation,

the family of LSE ~_mn modes with m odd and n even is

excited. The relevant potentials are as follows:
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The Rayleigh-Ritz variational expression for the
reactance of the iris is [1]

x
ij

= Qi* “ B-l - Q:k (5)

where 1 < i,j ~ K,K being the number of accessible

modes, w~ich we number according to increasing cutoff.

Qi* is the N-dimensional row vector representing the

th
i accessible mode in terms of an appropriate ortho-
normal basis on the aperture; B is the N x N truncation
of the infinite matrix representing the waveguide
Green’s function in the same basic on the aperture.
From the solutions of the capacitive and inductive
cases, it appears that a convenient choice of basis is
provided by the “Schwinger functions [3].” These lead

to the finite expansion
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Similarly, in the y-direction
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In the above representation, the matrix B takes the
form

where
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Frequency Dependence

In order to obtain a wide-band equivalent network,
we will now extract the frequency dependence of the
reactance matrix.

[)]2d 2_1 112
The normalized propagation constant ~ = ~

o

provides an expedient frequency variable for this prob-
lem. The characteristic admittance, normalized to that
of the fundamental mode, ie
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Forn>Oandm>l, the above distributed admittance

can be very closely approximated by means of the lumped

admittance
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the constants K1,K2 are close to unity and tend to

unity as m,n + CO. In fact, they are determined as

min max I?o,i – yo,i

‘1’K2

(13)

(14)

for 3 in the band of interest.

The case m = l,n = O is treated similarly.

Introducing (12) in (5), the inversion of B can be

carried out formally and we obtain the reactance matrix

X in its Foster canonical form [1]

N being the order of the variational solution.

The Corrugated Waveguide

(15)

The unit cell of the periodic structure and its
network model are depicted in Fig. 2. The transfer

matrix of the unit cell is given by

where we have defined

Ch = diag(cosh yl k/2, . . . . cosh yK 1/2) (17)

Sh = [Ch2 - 1]1’2 (18)

(19)

In particular, we have

T = diag(cosh yi!) - jZ Sh X-l Ch . (20)

Imposing Floquet’s theorem yields

(21)

where V and I are kth order column vectors representing
the tr~nsver=e electric and magnetic fields, respectively,

at AA and CC (see Fig. 2). Making use of the reciprocity

of the structure, (24) can be simplified into

TIJ = cosh 91 V .— (22)

The matrix T is real, but not symmetric and therefore
its eigenvalues are complex in general, in accordance

with the well–known properties of periodic structures.
As an example, the propagation characteristics of the
first two eigenvalues of a corrugated :,aveguide with
iris geometry

c/a = 0.8 ; d/b = 0.6 ; L/a = 1/8

was compu~ed using N = 7, K = 1,2,3,5,6, and 7 in the
band 1 < 6 < 1.6, which corresponds to the standard

wavegui~e b~nd. The results are displayed in Table 1,

The limiting cases of the capacitively and in-
ductively loaded waveguides can be recovered from the
general solution by setting c/a = 1 and d/b = 1.

Conclusions

From a Rayleigh–Ritz stationary formulation we

have determined a lumped equivalent network model for

the resonant iris in a rectangular waveguide.

The features of the method are as follows:

(1) The elements of the equivalent circuit are fre-

quency independent, (2) This network model has been
used to determine the propagation properties of the
periodic structure consisting of cascaded irises,

(3) The propagation constant of the periodic structure
is obtained as the solution of a matrix eigenvalue

problem, and (4) The method is general, in that irises
of arbitrary shape can be considered.
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Fig. 1.
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Geometry of the iris and equivalent network.
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Fig. 2. Periodic structure plus unit cell plus equivalent network.

TABLE I

PROPAGATION CONSTANT Ol? RECTANGULAR CORRUGATED WAVECUIDE (~ = f3a)NORMALIZED

———

K

1

I

1.0 ! 1.1 1.2 1.6

j5.536

j5.611

12.354

j5.176

12.403

j4.936

12.437

j5.014

14.120

j5.060

13.840

j2.687 j3.220 j3.718 j4.192 j4.650 j5.098

l—
I

j2.899 j3.393

13.251 13.132

j3.861

13.002

j4.313

12.860

j4.754

12.705

j5.185

12.536

2

—

3

5

6

.—

7

j2.382 j2.934

13.323 13.191

j3.426

13.056

j3.887

12.911

j4.329

12.754

j4.757

12.586
1

“T-j2.147 j2.694 j3.185

12.716

j3.645

12.661

j4.087

12.597

j4.516

12.52312.830 I 12.767

j2.294
I

j2.825 j3.294

14.835

j3.747

14.660

j4.176

14.486

j4.599

14.307
—.—.

j4.651

14.020

I

-1--
15.358 14.995

j2.395 j2.903

15.188 I 14.732

j3.368

14.525

j3.808

14.356

j4.234

14.191
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